Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemical characterization of air pollution in Eastern China and the Eastern United States

Identifieur interne : 000163 ( PascalFrancis/Corpus ); précédent : 000162; suivant : 000164

Chemical characterization of air pollution in Eastern China and the Eastern United States

Auteurs : XUEXI TIE ; Guy P. Brasseur ; CHUNSHENG ZHAO ; Claire Granier ; Steven Massie ; YU QIN ; PUCAI WANG ; GELI WANG ; PEICAI YANG ; Andreas Richter

Source :

RBID : Pascal:06-0222947

Descripteurs français

English descriptors

Abstract

Satellite data (MODIS, GOME, and MOPITT) together with a chemical transport global model of the atmosphere (MOZART-2) are used to characterize air pollution in Eastern China and the Eastern US to assess the differences between the photochemical conditions in these two regions. Observations show that aerosol concentrations (both fine (radius <0.5 μm) and coarse modes (radius >0.5 μm)) are higher in Eastern China than in the Eastern US. The NOx concentrations in both regions are substantially higher than in remote regions such as over the oceans (150 compared to 5 (1014#cm-2) over the Pacific Ocean). The CO concentrations are high in both urbanized areas (30 compared to 10 (1017#cm-2) over the Pacific Ocean). However, the concentrations of non-methane hydrocarbons from both anthropogenic and biogenic sources are considerably lower in Eastern China than in the Eastern US. As a result, the rate of photochemical ozone production and ozone concentrations during summer is significantly lower in Eastern China (daily averaged concentrations of 4050 ppbv in summer) than in the Eastern US (daily averaged values of 6070 ppbv). The analysis also shows that in Eastern China, the O3production is mainly due to the oxidation of carbon monoxide (54% of total O3 production), while, in the Eastern US, the O3 production is attributed primarily to the oxidation of reactive hydrocarbons (68% of total O3 production). The results also indicate that biogenic emissions of hydrocarbons contribute substantially to the production of O3 in the Eastern US. The O3 production due to the oxidation of biogenic hydrocarbons represents approximately one third of total O3 photochemical production in this region. Measurements of surface ozone in the Eastern US and Eastern China seem to support that the summer ozone production is lower in Eastern China than in the Eastern US. However, additional surface measurements, especially of reactive hydrocarbons and ozone are needed in Eastern China in order to improve the present analysis and to confirm our current conclusions. A sensitivity study shows that with increase in anthropogenic emissions of HCs, the surface ozone concentrations significantly increase in Eastern China, indicating that the increase in the emissions of HCs plays an important role for the enhancement in surface ozone in this region.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 40
A06       @2 14
A08 01  1  ENG  @1 Chemical characterization of air pollution in Eastern China and the Eastern United States
A11 01  1    @1 XUEXI TIE
A11 02  1    @1 BRASSEUR (Guy P.)
A11 03  1    @1 CHUNSHENG ZHAO
A11 04  1    @1 GRANIER (Claire)
A11 05  1    @1 MASSIE (Steven)
A11 06  1    @1 YU QIN
A11 07  1    @1 PUCAI WANG
A11 08  1    @1 GELI WANG
A11 09  1    @1 PEICAI YANG
A11 10  1    @1 RICHTER (Andreas)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, CO @3 USA @Z 1 aut. @Z 2 aut. @Z 5 aut.
A14 02      @1 Institute of Atmospheric Physics, Chinese Academy of Sciences @3 CHN @Z 1 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut.
A14 03      @1 Max-Planck Institute of Meteorology @2 Hamburg @3 DEU @Z 2 aut. @Z 4 aut.
A14 04      @1 Department of Atmospheric Science, School of Physics, Peking University @2 Beijing 100871 @3 CHN @Z 3 aut. @Z 6 aut.
A14 05      @1 Aeronomy Laboratory, NOAA @2 Boulder, CO @3 USA @Z 4 aut.
A14 06      @1 Service d'aeronomie/IPSL @2 Paris @3 FRA @Z 4 aut.
A14 07      @1 University of Bremen @2 Bremen @3 DEU @Z 10 aut.
A20       @1 2607-2625
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000142791380170
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 06-0222947
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Satellite data (MODIS, GOME, and MOPITT) together with a chemical transport global model of the atmosphere (MOZART-2) are used to characterize air pollution in Eastern China and the Eastern US to assess the differences between the photochemical conditions in these two regions. Observations show that aerosol concentrations (both fine (radius <0.5 μm) and coarse modes (radius >0.5 μm)) are higher in Eastern China than in the Eastern US. The NOx concentrations in both regions are substantially higher than in remote regions such as over the oceans (150 compared to 5 (1014#cm-2) over the Pacific Ocean). The CO concentrations are high in both urbanized areas (30 compared to 10 (1017#cm-2) over the Pacific Ocean). However, the concentrations of non-methane hydrocarbons from both anthropogenic and biogenic sources are considerably lower in Eastern China than in the Eastern US. As a result, the rate of photochemical ozone production and ozone concentrations during summer is significantly lower in Eastern China (daily averaged concentrations of 4050 ppbv in summer) than in the Eastern US (daily averaged values of 6070 ppbv). The analysis also shows that in Eastern China, the O3production is mainly due to the oxidation of carbon monoxide (54% of total O3 production), while, in the Eastern US, the O3 production is attributed primarily to the oxidation of reactive hydrocarbons (68% of total O3 production). The results also indicate that biogenic emissions of hydrocarbons contribute substantially to the production of O3 in the Eastern US. The O3 production due to the oxidation of biogenic hydrocarbons represents approximately one third of total O3 photochemical production in this region. Measurements of surface ozone in the Eastern US and Eastern China seem to support that the summer ozone production is lower in Eastern China than in the Eastern US. However, additional surface measurements, especially of reactive hydrocarbons and ozone are needed in Eastern China in order to improve the present analysis and to confirm our current conclusions. A sensitivity study shows that with increase in anthropogenic emissions of HCs, the surface ozone concentrations significantly increase in Eastern China, indicating that the increase in the emissions of HCs plays an important role for the enhancement in surface ozone in this region.
C02 01  X    @0 001D16C02
C03 01  X  FRE  @0 Pollution air @5 01
C03 01  X  ENG  @0 Air pollution @5 01
C03 01  X  SPA  @0 Contaminación aire @5 01
C03 02  X  FRE  @0 Inventaire émission @5 02
C03 02  X  ENG  @0 Emission inventory @5 02
C03 02  X  SPA  @0 Inventario emisión @5 02
C03 03  X  FRE  @0 Hydrocarbure @2 FX @5 03
C03 03  X  ENG  @0 Hydrocarbon @2 FX @5 03
C03 03  X  SPA  @0 Hidrocarburo @2 FX @5 03
C03 04  X  FRE  @0 Azote oxyde @5 04
C03 04  X  ENG  @0 Nitrogen oxide @5 04
C03 04  X  SPA  @0 Nitrógeno óxido @5 04
C03 05  X  FRE  @0 Carbone monoxyde @2 NK @2 FX @5 05
C03 05  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 05
C03 05  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 05
C03 06  X  FRE  @0 Ozone @2 NK @2 FX @5 06
C03 06  X  ENG  @0 Ozone @2 NK @2 FX @5 06
C03 06  X  SPA  @0 Ozono @2 NK @2 FX @5 06
C03 07  X  FRE  @0 Polluant secondaire @5 07
C03 07  X  ENG  @0 Secondary pollutant @5 07
C03 07  X  SPA  @0 Contaminante secundario @5 07
C03 08  X  FRE  @0 Aérosol @5 08
C03 08  X  ENG  @0 Aerosols @5 08
C03 08  X  SPA  @0 Aerosol @5 08
C03 09  X  FRE  @0 Distribution concentration @5 09
C03 09  X  ENG  @0 Concentration distribution @5 09
C03 09  X  SPA  @0 Distribución concentración @5 09
C03 10  X  FRE  @0 Etude comparative @5 10
C03 10  X  ENG  @0 Comparative study @5 10
C03 10  X  SPA  @0 Estudio comparativo @5 10
C03 11  X  FRE  @0 Phénomène transport @5 11
C03 11  X  ENG  @0 Transport process @5 11
C03 11  X  SPA  @0 Fenómeno transporte @5 11
C03 12  X  FRE  @0 Observation par satellite @5 12
C03 12  X  ENG  @0 Satellite observation @5 12
C03 12  X  SPA  @0 Observación por satélite @5 12
C03 13  X  FRE  @0 Modélisation @5 13
C03 13  X  ENG  @0 Modeling @5 13
C03 13  X  SPA  @0 Modelización @5 13
C03 14  3  FRE  @0 Chimie atmosphérique @5 14
C03 14  3  ENG  @0 Atmospheric chemistry @5 14
C03 15  X  FRE  @0 Réaction photochimique @5 15
C03 15  X  ENG  @0 Photochemical reaction @5 15
C03 15  X  SPA  @0 Reacción fotoquímica @5 15
C03 16  X  FRE  @0 Inventaire source pollution @5 16
C03 16  X  ENG  @0 Pollution source inventory @5 16
C03 16  X  SPA  @0 Inventario fuente polución @5 16
C03 17  X  FRE  @0 Facteur anthropique @5 17
C03 17  X  ENG  @0 Anthropogenic factor @5 17
C03 17  X  SPA  @0 Factor antrópico @5 17
C03 18  X  FRE  @0 Facteur biogène @5 18
C03 18  X  ENG  @0 Biogenic factor @5 18
C03 18  X  SPA  @0 Factor biógeno @5 18
C03 19  X  FRE  @0 Chine @2 NG @5 31
C03 19  X  ENG  @0 China @2 NG @5 31
C03 19  X  SPA  @0 China @2 NG @5 31
C03 20  X  FRE  @0 Etats Unis @2 NG @5 32
C03 20  X  ENG  @0 United States @2 NG @5 32
C03 20  X  SPA  @0 Estados Unidos @2 NG @5 32
C07 01  X  FRE  @0 Asie @2 NG
C07 01  X  ENG  @0 Asia @2 NG
C07 01  X  SPA  @0 Asia @2 NG
C07 02  X  FRE  @0 Amérique du Nord @2 NG
C07 02  X  ENG  @0 North America @2 NG
C07 02  X  SPA  @0 America del norte @2 NG
C07 03  X  FRE  @0 Amérique @2 NG
C07 03  X  ENG  @0 America @2 NG
C07 03  X  SPA  @0 America @2 NG
C07 04  X  FRE  @0 Composé organique @2 NA @5 43
C07 04  X  ENG  @0 Organic compounds @2 NA @5 43
C07 04  X  SPA  @0 Compuesto orgánico @2 NA @5 43
N21       @1 142

Format Inist (serveur)

NO : PASCAL 06-0222947 INIST
ET : Chemical characterization of air pollution in Eastern China and the Eastern United States
AU : XUEXI TIE; BRASSEUR (Guy P.); CHUNSHENG ZHAO; GRANIER (Claire); MASSIE (Steven); YU QIN; PUCAI WANG; GELI WANG; PEICAI YANG; RICHTER (Andreas)
AF : National Center for Atmospheric Research/Boulder, CO/Etats-Unis (1 aut., 2 aut., 5 aut.); Institute of Atmospheric Physics, Chinese Academy of Sciences/Chine (1 aut., 7 aut., 8 aut., 9 aut.); Max-Planck Institute of Meteorology/Hamburg/Allemagne (2 aut., 4 aut.); Department of Atmospheric Science, School of Physics, Peking University/Beijing 100871/Chine (3 aut., 6 aut.); Aeronomy Laboratory, NOAA/Boulder, CO/Etats-Unis (4 aut.); Service d'aeronomie/IPSL/Paris/France (4 aut.); University of Bremen/Bremen/Allemagne (10 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2006; Vol. 40; No. 14; Pp. 2607-2625; Bibl. 1 p.1/4
LA : Anglais
EA : Satellite data (MODIS, GOME, and MOPITT) together with a chemical transport global model of the atmosphere (MOZART-2) are used to characterize air pollution in Eastern China and the Eastern US to assess the differences between the photochemical conditions in these two regions. Observations show that aerosol concentrations (both fine (radius <0.5 μm) and coarse modes (radius >0.5 μm)) are higher in Eastern China than in the Eastern US. The NOx concentrations in both regions are substantially higher than in remote regions such as over the oceans (150 compared to 5 (1014#cm-2) over the Pacific Ocean). The CO concentrations are high in both urbanized areas (30 compared to 10 (1017#cm-2) over the Pacific Ocean). However, the concentrations of non-methane hydrocarbons from both anthropogenic and biogenic sources are considerably lower in Eastern China than in the Eastern US. As a result, the rate of photochemical ozone production and ozone concentrations during summer is significantly lower in Eastern China (daily averaged concentrations of 4050 ppbv in summer) than in the Eastern US (daily averaged values of 6070 ppbv). The analysis also shows that in Eastern China, the O3production is mainly due to the oxidation of carbon monoxide (54% of total O3 production), while, in the Eastern US, the O3 production is attributed primarily to the oxidation of reactive hydrocarbons (68% of total O3 production). The results also indicate that biogenic emissions of hydrocarbons contribute substantially to the production of O3 in the Eastern US. The O3 production due to the oxidation of biogenic hydrocarbons represents approximately one third of total O3 photochemical production in this region. Measurements of surface ozone in the Eastern US and Eastern China seem to support that the summer ozone production is lower in Eastern China than in the Eastern US. However, additional surface measurements, especially of reactive hydrocarbons and ozone are needed in Eastern China in order to improve the present analysis and to confirm our current conclusions. A sensitivity study shows that with increase in anthropogenic emissions of HCs, the surface ozone concentrations significantly increase in Eastern China, indicating that the increase in the emissions of HCs plays an important role for the enhancement in surface ozone in this region.
CC : 001D16C02
FD : Pollution air; Inventaire émission; Hydrocarbure; Azote oxyde; Carbone monoxyde; Ozone; Polluant secondaire; Aérosol; Distribution concentration; Etude comparative; Phénomène transport; Observation par satellite; Modélisation; Chimie atmosphérique; Réaction photochimique; Inventaire source pollution; Facteur anthropique; Facteur biogène; Chine; Etats Unis
FG : Asie; Amérique du Nord; Amérique; Composé organique
ED : Air pollution; Emission inventory; Hydrocarbon; Nitrogen oxide; Carbon monoxide; Ozone; Secondary pollutant; Aerosols; Concentration distribution; Comparative study; Transport process; Satellite observation; Modeling; Atmospheric chemistry; Photochemical reaction; Pollution source inventory; Anthropogenic factor; Biogenic factor; China; United States
EG : Asia; North America; America; Organic compounds
SD : Contaminación aire; Inventario emisión; Hidrocarburo; Nitrógeno óxido; Carbono monóxido; Ozono; Contaminante secundario; Aerosol; Distribución concentración; Estudio comparativo; Fenómeno transporte; Observación por satélite; Modelización; Reacción fotoquímica; Inventario fuente polución; Factor antrópico; Factor biógeno; China; Estados Unidos
LO : INIST-8940B.354000142791380170
ID : 06-0222947

Links to Exploration step

Pascal:06-0222947

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Chemical characterization of air pollution in Eastern China and the Eastern United States</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Max-Planck Institute of Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chunsheng Zhao" sort="Chunsheng Zhao" uniqKey="Chunsheng Zhao" last="Chunsheng Zhao">CHUNSHENG ZHAO</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Atmospheric Science, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Max-Planck Institute of Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Service d'aeronomie/IPSL</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Massie, Steven" sort="Massie, Steven" uniqKey="Massie S" first="Steven" last="Massie">Steven Massie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yu Qin" sort="Yu Qin" uniqKey="Yu Qin" last="Yu Qin">YU QIN</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Atmospheric Science, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pucai Wang" sort="Pucai Wang" uniqKey="Pucai Wang" last="Pucai Wang">PUCAI WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Geli Wang" sort="Geli Wang" uniqKey="Geli Wang" last="Geli Wang">GELI WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peicai Yang" sort="Peicai Yang" uniqKey="Peicai Yang" last="Peicai Yang">PEICAI YANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, Andreas" sort="Richter, Andreas" uniqKey="Richter A" first="Andreas" last="Richter">Andreas Richter</name>
<affiliation>
<inist:fA14 i1="07">
<s1>University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0222947</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0222947 INIST</idno>
<idno type="RBID">Pascal:06-0222947</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Chemical characterization of air pollution in Eastern China and the Eastern United States</title>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Max-Planck Institute of Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chunsheng Zhao" sort="Chunsheng Zhao" uniqKey="Chunsheng Zhao" last="Chunsheng Zhao">CHUNSHENG ZHAO</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Atmospheric Science, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Max-Planck Institute of Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Service d'aeronomie/IPSL</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Massie, Steven" sort="Massie, Steven" uniqKey="Massie S" first="Steven" last="Massie">Steven Massie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yu Qin" sort="Yu Qin" uniqKey="Yu Qin" last="Yu Qin">YU QIN</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Atmospheric Science, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pucai Wang" sort="Pucai Wang" uniqKey="Pucai Wang" last="Pucai Wang">PUCAI WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Geli Wang" sort="Geli Wang" uniqKey="Geli Wang" last="Geli Wang">GELI WANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peicai Yang" sort="Peicai Yang" uniqKey="Peicai Yang" last="Peicai Yang">PEICAI YANG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, Andreas" sort="Richter, Andreas" uniqKey="Richter A" first="Andreas" last="Richter">Andreas Richter</name>
<affiliation>
<inist:fA14 i1="07">
<s1>University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Air pollution</term>
<term>Anthropogenic factor</term>
<term>Atmospheric chemistry</term>
<term>Biogenic factor</term>
<term>Carbon monoxide</term>
<term>China</term>
<term>Comparative study</term>
<term>Concentration distribution</term>
<term>Emission inventory</term>
<term>Hydrocarbon</term>
<term>Modeling</term>
<term>Nitrogen oxide</term>
<term>Ozone</term>
<term>Photochemical reaction</term>
<term>Pollution source inventory</term>
<term>Satellite observation</term>
<term>Secondary pollutant</term>
<term>Transport process</term>
<term>United States</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pollution air</term>
<term>Inventaire émission</term>
<term>Hydrocarbure</term>
<term>Azote oxyde</term>
<term>Carbone monoxyde</term>
<term>Ozone</term>
<term>Polluant secondaire</term>
<term>Aérosol</term>
<term>Distribution concentration</term>
<term>Etude comparative</term>
<term>Phénomène transport</term>
<term>Observation par satellite</term>
<term>Modélisation</term>
<term>Chimie atmosphérique</term>
<term>Réaction photochimique</term>
<term>Inventaire source pollution</term>
<term>Facteur anthropique</term>
<term>Facteur biogène</term>
<term>Chine</term>
<term>Etats Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Satellite data (MODIS, GOME, and MOPITT) together with a chemical transport global model of the atmosphere (MOZART-2) are used to characterize air pollution in Eastern China and the Eastern US to assess the differences between the photochemical conditions in these two regions. Observations show that aerosol concentrations (both fine (radius <0.5 μm) and coarse modes (radius >0.5 μm)) are higher in Eastern China than in the Eastern US. The NO
<sub>x</sub>
concentrations in both regions are substantially higher than in remote regions such as over the oceans (150 compared to 5 (10
<sup>14</sup>
#cm
<sup>-2</sup>
) over the Pacific Ocean). The CO concentrations are high in both urbanized areas (30 compared to 10 (10
<sup>17</sup>
#cm
<sup>-2</sup>
) over the Pacific Ocean). However, the concentrations of non-methane hydrocarbons from both anthropogenic and biogenic sources are considerably lower in Eastern China than in the Eastern US. As a result, the rate of photochemical ozone production and ozone concentrations during summer is significantly lower in Eastern China (daily averaged concentrations of 4050 ppbv in summer) than in the Eastern US (daily averaged values of 6070 ppbv). The analysis also shows that in Eastern China, the O
<sub>3</sub>
production is mainly due to the oxidation of carbon monoxide (54% of total O
<sub>3</sub>
production), while, in the Eastern US, the O
<sub>3</sub>
production is attributed primarily to the oxidation of reactive hydrocarbons (68% of total O
<sub>3</sub>
production). The results also indicate that biogenic emissions of hydrocarbons contribute substantially to the production of O
<sub>3</sub>
in the Eastern US. The O
<sub>3</sub>
production due to the oxidation of biogenic hydrocarbons represents approximately one third of total O
<sub>3</sub>
photochemical production in this region. Measurements of surface ozone in the Eastern US and Eastern China seem to support that the summer ozone production is lower in Eastern China than in the Eastern US. However, additional surface measurements, especially of reactive hydrocarbons and ozone are needed in Eastern China in order to improve the present analysis and to confirm our current conclusions. A sensitivity study shows that with increase in anthropogenic emissions of HCs, the surface ozone concentrations significantly increase in Eastern China, indicating that the increase in the emissions of HCs plays an important role for the enhancement in surface ozone in this region.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Chemical characterization of air pollution in Eastern China and the Eastern United States</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRASSEUR (Guy P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHUNSHENG ZHAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GRANIER (Claire)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MASSIE (Steven)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YU QIN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PUCAI WANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GELI WANG</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>PEICAI YANG</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>RICHTER (Andreas)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Atmospheric Physics, Chinese Academy of Sciences</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Max-Planck Institute of Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Atmospheric Science, School of Physics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Service d'aeronomie/IPSL</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>2607-2625</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000142791380170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0222947</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Satellite data (MODIS, GOME, and MOPITT) together with a chemical transport global model of the atmosphere (MOZART-2) are used to characterize air pollution in Eastern China and the Eastern US to assess the differences between the photochemical conditions in these two regions. Observations show that aerosol concentrations (both fine (radius <0.5 μm) and coarse modes (radius >0.5 μm)) are higher in Eastern China than in the Eastern US. The NO
<sub>x</sub>
concentrations in both regions are substantially higher than in remote regions such as over the oceans (150 compared to 5 (10
<sup>14</sup>
#cm
<sup>-2</sup>
) over the Pacific Ocean). The CO concentrations are high in both urbanized areas (30 compared to 10 (10
<sup>17</sup>
#cm
<sup>-2</sup>
) over the Pacific Ocean). However, the concentrations of non-methane hydrocarbons from both anthropogenic and biogenic sources are considerably lower in Eastern China than in the Eastern US. As a result, the rate of photochemical ozone production and ozone concentrations during summer is significantly lower in Eastern China (daily averaged concentrations of 4050 ppbv in summer) than in the Eastern US (daily averaged values of 6070 ppbv). The analysis also shows that in Eastern China, the O
<sub>3</sub>
production is mainly due to the oxidation of carbon monoxide (54% of total O
<sub>3</sub>
production), while, in the Eastern US, the O
<sub>3</sub>
production is attributed primarily to the oxidation of reactive hydrocarbons (68% of total O
<sub>3</sub>
production). The results also indicate that biogenic emissions of hydrocarbons contribute substantially to the production of O
<sub>3</sub>
in the Eastern US. The O
<sub>3</sub>
production due to the oxidation of biogenic hydrocarbons represents approximately one third of total O
<sub>3</sub>
photochemical production in this region. Measurements of surface ozone in the Eastern US and Eastern China seem to support that the summer ozone production is lower in Eastern China than in the Eastern US. However, additional surface measurements, especially of reactive hydrocarbons and ozone are needed in Eastern China in order to improve the present analysis and to confirm our current conclusions. A sensitivity study shows that with increase in anthropogenic emissions of HCs, the surface ozone concentrations significantly increase in Eastern China, indicating that the increase in the emissions of HCs plays an important role for the enhancement in surface ozone in this region.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Inventaire émission</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Emission inventory</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Inventario emisión</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hydrocarbure</s0>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hydrocarbon</s0>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hidrocarburo</s0>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Azote oxyde</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nitrogen oxide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nitrógeno óxido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Carbone monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Polluant secondaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Secondary pollutant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Contaminante secundario</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Réaction photochimique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Photochemical reaction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Reacción fotoquímica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Inventaire source pollution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Pollution source inventory</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Inventario fuente polución</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Facteur anthropique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Anthropogenic factor</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Factor antrópico</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Facteur biogène</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Biogenic factor</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Factor biógeno</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Chine</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>China</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>China</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Composé organique</s0>
<s2>NA</s2>
<s5>43</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Organic compounds</s0>
<s2>NA</s2>
<s5>43</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Compuesto orgánico</s0>
<s2>NA</s2>
<s5>43</s5>
</fC07>
<fN21>
<s1>142</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 06-0222947 INIST</NO>
<ET>Chemical characterization of air pollution in Eastern China and the Eastern United States</ET>
<AU>XUEXI TIE; BRASSEUR (Guy P.); CHUNSHENG ZHAO; GRANIER (Claire); MASSIE (Steven); YU QIN; PUCAI WANG; GELI WANG; PEICAI YANG; RICHTER (Andreas)</AU>
<AF>National Center for Atmospheric Research/Boulder, CO/Etats-Unis (1 aut., 2 aut., 5 aut.); Institute of Atmospheric Physics, Chinese Academy of Sciences/Chine (1 aut., 7 aut., 8 aut., 9 aut.); Max-Planck Institute of Meteorology/Hamburg/Allemagne (2 aut., 4 aut.); Department of Atmospheric Science, School of Physics, Peking University/Beijing 100871/Chine (3 aut., 6 aut.); Aeronomy Laboratory, NOAA/Boulder, CO/Etats-Unis (4 aut.); Service d'aeronomie/IPSL/Paris/France (4 aut.); University of Bremen/Bremen/Allemagne (10 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2006; Vol. 40; No. 14; Pp. 2607-2625; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Satellite data (MODIS, GOME, and MOPITT) together with a chemical transport global model of the atmosphere (MOZART-2) are used to characterize air pollution in Eastern China and the Eastern US to assess the differences between the photochemical conditions in these two regions. Observations show that aerosol concentrations (both fine (radius <0.5 μm) and coarse modes (radius >0.5 μm)) are higher in Eastern China than in the Eastern US. The NO
<sub>x</sub>
concentrations in both regions are substantially higher than in remote regions such as over the oceans (150 compared to 5 (10
<sup>14</sup>
#cm
<sup>-2</sup>
) over the Pacific Ocean). The CO concentrations are high in both urbanized areas (30 compared to 10 (10
<sup>17</sup>
#cm
<sup>-2</sup>
) over the Pacific Ocean). However, the concentrations of non-methane hydrocarbons from both anthropogenic and biogenic sources are considerably lower in Eastern China than in the Eastern US. As a result, the rate of photochemical ozone production and ozone concentrations during summer is significantly lower in Eastern China (daily averaged concentrations of 4050 ppbv in summer) than in the Eastern US (daily averaged values of 6070 ppbv). The analysis also shows that in Eastern China, the O
<sub>3</sub>
production is mainly due to the oxidation of carbon monoxide (54% of total O
<sub>3</sub>
production), while, in the Eastern US, the O
<sub>3</sub>
production is attributed primarily to the oxidation of reactive hydrocarbons (68% of total O
<sub>3</sub>
production). The results also indicate that biogenic emissions of hydrocarbons contribute substantially to the production of O
<sub>3</sub>
in the Eastern US. The O
<sub>3</sub>
production due to the oxidation of biogenic hydrocarbons represents approximately one third of total O
<sub>3</sub>
photochemical production in this region. Measurements of surface ozone in the Eastern US and Eastern China seem to support that the summer ozone production is lower in Eastern China than in the Eastern US. However, additional surface measurements, especially of reactive hydrocarbons and ozone are needed in Eastern China in order to improve the present analysis and to confirm our current conclusions. A sensitivity study shows that with increase in anthropogenic emissions of HCs, the surface ozone concentrations significantly increase in Eastern China, indicating that the increase in the emissions of HCs plays an important role for the enhancement in surface ozone in this region.</EA>
<CC>001D16C02</CC>
<FD>Pollution air; Inventaire émission; Hydrocarbure; Azote oxyde; Carbone monoxyde; Ozone; Polluant secondaire; Aérosol; Distribution concentration; Etude comparative; Phénomène transport; Observation par satellite; Modélisation; Chimie atmosphérique; Réaction photochimique; Inventaire source pollution; Facteur anthropique; Facteur biogène; Chine; Etats Unis</FD>
<FG>Asie; Amérique du Nord; Amérique; Composé organique</FG>
<ED>Air pollution; Emission inventory; Hydrocarbon; Nitrogen oxide; Carbon monoxide; Ozone; Secondary pollutant; Aerosols; Concentration distribution; Comparative study; Transport process; Satellite observation; Modeling; Atmospheric chemistry; Photochemical reaction; Pollution source inventory; Anthropogenic factor; Biogenic factor; China; United States</ED>
<EG>Asia; North America; America; Organic compounds</EG>
<SD>Contaminación aire; Inventario emisión; Hidrocarburo; Nitrógeno óxido; Carbono monóxido; Ozono; Contaminante secundario; Aerosol; Distribución concentración; Estudio comparativo; Fenómeno transporte; Observación por satélite; Modelización; Reacción fotoquímica; Inventario fuente polución; Factor antrópico; Factor biógeno; China; Estados Unidos</SD>
<LO>INIST-8940B.354000142791380170</LO>
<ID>06-0222947</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000163 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000163 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0222947
   |texte=   Chemical characterization of air pollution in Eastern China and the Eastern United States
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023